C: REGISTRATION NUMBER:

M.Sc Physics Admission Test

Department of Physics Quaid-i-Azam University Islamabad.

3 September 2007

Time: 60 minutes

- Answer all 10 questions or as many as you can.
- Each question carries equal marks. Circle only the right answer. If you do not know the answer, do not circle any answer.
- Circling two choices will be considered as a wrong answer.
- Wrong answers will be negatively marked. Your total marks will be reduced if you circle the wrong answer.
- If you circle the wrong box, write "cancel" to cancel it.
- Do not attempt to copy. Your neighbor may have a different ordering of questions and answers.
- Any attempt to copy answers from another candidate will result in permanent disbarment from the university for all purposes.
- No books or calculators are allowed.
- GIVE ALL ANSWERS ON THIS SHEET ONLY. The remaining sheets are not to be submitted you may take them with you.

CIRCLE THE CORRECT ANSWER

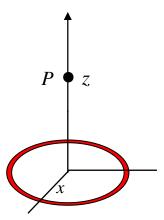
Q.1	a	b	c	d	e
Q.2	a	b	c	d	e
Q.3	a	b	c	d	e
Q.4	a	b	c	d	e
Q.5	a	b	c	d	e
Q.6	a	b	c	d	e
Q.7	a	b	c	d	e
Q.8	a	b	c	d	e
Q.9	a	b	c	d	e
Q.10	a	b	c	d	e

- Q.1 A particle of charge q and mass m enters with speed v into a uniform magnetic field B that is perpendicular to the velocity. An electric field is applied in a direction perpendicular to B with a strength E just sufficient to keep the particle from bending. (In the units used below c is the speed of light and the electric and magnetic fields have the same units). The electric field is:
 - a) $E = \frac{1}{2}mv^2B$
 - b) $E = \frac{vB}{mc}$
 - c) $E = \frac{1}{2} \frac{vB}{c}$
 - d) $E = \frac{vB}{c}$
 - e) The electric field cannot prevent the particle from bending.

- Q.2 A deep underwater explosion causes waves to spread out from point P. The amplitude of the waves decreases as a function of distance r from P as,
 - a) $\frac{1}{r^2}$
 - b) $\frac{1}{r}$
 - c) $\frac{1}{r^{1/2}}$
 - d) $\frac{1}{\log r}$
 - e) $\log r$

- Q.3 Consider three ideal gases all at temperature T. A has N single atoms, B has N/2 diatomic molecules, and C has N/3 triatomic molecules. Which is the WRONG statement below?
 - a) The ratio of pressures is 6:3:2
 - b) At sufficiently high temperature, the specific heats at constant volume for all gases are equal.
 - c) At sufficiently high temperature, the specific heats at constant pressure for all gases are equal.
 - d) The internal energy of all three gases is equal at high enough temperature.
 - e) All three gases have the same entropy at all temperatures.

- Q.4 The approximate number of molecules in a grain of salt of size 1mm³ is closest to,
 - a) 10^{15}
 - b) 10^{17}
 - c) 10^{21}
 - d) 10^{27}
 - e) 10^{33}


- Q.5 A mass *m* is tied to one end of a string of length L and whirled around in a vertical circle. What is the minimum kinetic energy that the mass must have at any point on the circle?
 - a) zero
 - b) $\frac{1}{2}mgL$
 - c) mgL
 - d) $\frac{3}{2}mgL$
 - e) Cannot be determined from given information.

- Q.6 A cube of volume V and constant density ρ is placed on a smooth level surface and pushed with a pressure P from one side. Find the acceleration of the cube.
 - a) $\frac{PV^{1/3}}{\rho}$
 - b) $\frac{P}{V^{1/3}\rho}$
 - c) $\frac{PV^{1/3}}{\rho}$
 - d) $\frac{PV}{\rho}$
 - e) none of the above

- Q.7 A bucket almost filled with water is hung with a rope and rotated. The water level is higher at the rim than at the centre. A small speck of dust floats mid-way between the centre and the rim. The reason it does not slip down the inclined plane of water is most accurately summarized by one of the following statements:
 - a) Centrifugal force pushes the speck outwards.
 - b) Gravity is not strong enough to make the speck slip down.
 - c) Centrifugal force and gravity compensate each other.
 - d) The force on the speck normal to the liquid surface compensates the effect of gravity and the centrifugal force.
 - e) The speck is so small and light that all forces acting upon it are small. So it remains at rest.

- Q.8 Two concentric rings, each with equal mass per unit length λ , are joined so that they rotate together through the centre. One ring has radius R, the other 2R. The moment of inertia of the combined system is,
 - a) $\pi \lambda R^2$
 - b) $2\pi\lambda R^3$
 - c) $8\pi\lambda R^3$
 - d) $18\pi\lambda R^3$
 - e) None of the above

- Q.9 A ring-shaped conductor of radius R carries a total charge q. Point P is along the line perpendicular to the plane of the ring at distance z away from the centre with $z \gg R$. The electric field is proportional to:
 - a) $\frac{q}{z}$
 - b) $\frac{qz}{R^2}$
 - c) $\frac{q}{z^2}$
 - d) $\frac{q}{z^2} \log \frac{z}{R}$
 - e) $q \log \frac{z}{R}$

- Q.10 A particle moves in the x direction according to $x = \frac{1}{2}vt + A\sin\omega t$ and in the y direction according to $y = \frac{1}{2}vt + A\cos\omega t$. The path seen is,
 - a) A simple oscillation in the x and y directions.
 - b) A circular path with the origin moving at speed v.
 - c) A circular path with the origin at rest.
 - d) An ellipsoidal path.
 - e) A circular path with the origin moving at speed $v/\sqrt{2}$.

Q.1			d	
Q.2	b			
Q.3				e
Q.4		С		
Q.5	b			
Q.6	b			
Q.7			d	
Q.8			d	
Q.9		c		
Q.10				e