

QUAID-I-AZAM UNIVERSITY ISLAMABAD

GUADI-AZAM UNIVERSITY ISLAMABAD		B.Sc. Annual Examinations2013 (PART-I)	Roll No:		
Subject:	Physics	(111111)	Paper: A (Mechanics)		
Time Al	lowed: 3 Hours	June 26, 2013	Max Marks: 50		
Note:	Attempt total FIVE quallowed.	nestions. All questions carry equal marks. Only	y simple scientific calculator is		
Q. No.1					
(a)		rve? Show that angle of banking depends on	speed of car and radius of curv	ature	
	of the road.			(4)	
(b)	A 10,700 N car traveling at 13.4 m/sec attempts to round an unbanked curve with radius of 61m.				
	i. What force	of friction is required to keep the car on its of	circular path?		
	ii. What minir	num coefficient of static friction between the	e tyres and road is required?	(4)	
(c)	Why it is that racing drives actually speed up when traversing a curve?				
Q. No.2 (a)	A circular metal plate of radius 2R form which a disk of radius R has been removed. Let us call i				
	object X. its center of 1	mass is shown as a dot on the x-axis. Locate	this point.	(4)	
		Y-axis Object C Object X Object X			
(b)	Show that ratio of the distances x_1 and x_2 of two particles from their centers of mass is the inverse				
	of their masses that is $x_1/x_2 = m_2/m_1$				
(c)	Where is the center of mass of Earth's atmosphere?				
Q. No.3	What is an inclusion	llicion? Dicouse inclustic callicion in a set d'a	uancian	(4)	
. ,		llision? Discuss inelastic collision in one din		(4)	
(b)		nd embrace in a completely inelastic collis	·		
	impact. Alfred, whose	mass $m_A = 83$ kg, is originally moving eas	twards with a speed $v_A = 6.4$ J	km/h.	

- (b) Two skaters collide and embrace in a completely inelastic collision that is, they stick together after impact. Alfred, whose mass m_A = 83 kg, is originally moving eastwards with a speed v_A = 6.4 km/h. Barbara, whose mass m_B = 55 kg, is originally moving northwards with a speed v_B=8.8 km/hr. What is the velocity V of the couple after the impact?
- (c) How would you design a recoilless gun? (2)

Q. No.4

- (a) Calculate the rotational inertia of a rod about an axis through center and perpendicular to its length. (4)
- (b) Calculate the rotational inertia of a 'meter stick', with mass 0.56 kg, about an axis perpendicular to the stick and located at the 20 cm mark. (4)
- (c) About what axis would a uniform cube have its minimum rotational inertia? (2)

P.T.O

Q. No.5 (a)	Which is greater, the angular momentum of the Earth associated with its rotation on its axis or				
(b)	Show that $L = I \cdot \omega$ for two particle system of the following Fig:	(4) (4)			
(c)	A helicopter flies off, its propellers rotating. Why doesn't the body of the helicopter rotat	te in the			
	opposite direction?	(2)			
Q. No.6					
(a)	State and prove Kepler's:				
	i. law of areas.	(4)			
(1-)	ii. law of periods of planetary motion.	(4)			
(b)	Sun's center is at one focus of Earth's orbit. How far is it from the other focus? Express your a				
	terms of the radius of the Sun $R_s = 6.96 \times 10^8 \text{ m}$. The eccentricity of Earth's orbit is 0.0167 a major axis is 1.50 x 1011 m.				
(2)	major axis is 1.50 x 10 ¹¹ m.	(4)			
(c)	How could you determine mass of the Moon?	(2)			
Q. No.7					
(a)	Show that speed of flow of fluid in a pipe is given by:				
	${ m v_a}=\sqrt{2gh ho'/ ho}$				
	Also explain to measure the flow speed of gas by using the Pitot tube. (4)				
(b)	A Pitot tube is mounted on an airplane wing to determine the speed of the plane relative to the air,				
	which has a density of $1.03\ kg/m^3$. The tube contains alcohol and indicates a level difference of				
	26.2 cm. What is the plane's speed relative to the air? The density of alcohol is 810 kg/m^3 .	(4)			
(c)	Why does a stream of water from a faucet become narrower as it falls?	(2)			
Q. No.8					
-	Discuss some consequences of the Lorentz Transformation.	(4)			
(b)	b) A clock moves along the x-axis at a speed of $0.622xc$ and reads zero as it passes the origin: $(c=3.0x10^8 \text{ m/sec})$.				
	i. Calculate the Lorentz factor.ii. What time does the clock read as it passes x = 183 m?	(4)			
(c)	"The mass of electron is 0.511 MeV ". What does this statement exactly mean?	(2)			
(~)	or electron to old I I i.e. i. in that does this statement official incarry	(-)			